Thyroid hormone activates protein arginine methyltransferase 1 expression by directly inducing c-Myc transcription during Xenopus intestinal stem cell development.
نویسندگان
چکیده
Adult organ-specific stem cells are essential for organ homeostasis and tissue repair and regeneration. The formation of such stem cells during vertebrate development is poorly understood. Intestinal remodeling during thyroid hormone (T3)-dependent Xenopus metamorphosis resembles postembryonic intestinal maturation in mammals. During metamorphosis, the intestine is remodeled de novo via a yet unknown mechanism. Protein arginine methyltransferase 1 (PRMT1) is up-regulated in and required for adult intestinal stem cells during metamorphosis. PRMT1 up-regulation is the earliest known molecular event for the developing stem cells and is also conserved during zebrafish and mouse intestinal development. To analyze how PRMT1 is specifically up-regulated during the formation of the adult intestinal stem cells, we cloned the Xenopus PRMT1 promoter and characterized it in CaCo-2 cells, a human cell line with intestinal stem cell characteristics. Through a series deletion and mutational analyses, we showed that the stem cell-associated transcription factor c-Myc could bind to a conserved site in the first intron to activate the promoter. Furthermore, we demonstrated that during metamorphosis, both c-Myc and PRMT1 were highly up-regulated, specifically in the remodeling intestine but not the resorbing tail, and that c-Myc was induced by T3 prior to PRMT1 up-regulation. In addition, we showed that T3 directly activated the c-Myc gene during metamorphosis in the intestine via binding of the T3 receptor to the c-Myc promoter. These results suggest that T3 induces c-Myc transcription directly in the intestine, that c-Myc, in turn, activates PRMT1 expression, and that this is an important gene regulation cascade controlling intestinal stem cell development.
منابع مشابه
Novel functions of protein arginine methyltransferase 1 in thyroid hormone receptor-mediated transcription and in the regulation of metamorphic rate in Xenopus laevis.
Protein arginine methyltransferase 1 (PRMT1) acts as a transcription coactivator for nuclear receptors through histone H4 R3 methylation. The in vivo function of PRMT1 is largely unknown. Here we investigated the role of PRMT1 in thyroid hormone (T3) receptor (TR)-mediated transcription in vivo during vertebrate development. By using intestinal remodeling during T3-dependent Xenopus laevis meta...
متن کاملA balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis
The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc-Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad-Max heterodimers that bind to the same target ...
متن کاملTissue-Specific Upregulation of MDS/EVI Gene Transcripts in the Intestine by Thyroid Hormone during Xenopus Metamorphosis
BACKGROUND Intestinal remodeling during amphibian metamorphosis resembles the maturation of the adult intestine during mammalian postembryonic development when the adult epithelial self-renewing system is established under the influence of high concentrations of plasma thyroid hormone (T3). This process involves de novo formation and subsequent proliferation and differentiation of the adult ste...
متن کاملThyroid Hormone‐Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis
In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of...
متن کاملDevelopmental and Thyroid Hormone Regulation of the DNA Methyltransferase 3a Gene in Xenopus Tadpoles.
Thyroid hormone is essential for normal development in vertebrates. In amphibians, T3 controls metamorphosis by inducing tissue-specific gene regulation programs. A hallmark of T3 action is the modification of chromatin structure, which underlies changes in gene transcription. We found that mRNA for the de novo DNA methyltransferase (DNMT) dnmt3a, but not dnmt1, increased in the brain of Xenopu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 287 13 شماره
صفحات -
تاریخ انتشار 2012